$\newcommand{\O}{\mathrm{O}}$

木幅の exact な値を DP を用いて計算するアルゴリズム(PSPACE版). 説明すると長くなるので気になる方は下記の論文を参照してください.
"On exact algorithms for treewidth" [Bodlaender et al. 2006]
時間計算量: $O^{\ast} (4^n)$ ($\mathrm{poly} (n)$ の factor は省略)
#include<iostream>
#include<vector>
#include<algorithm>
#include<time.h>
#define INF 1000000005
const int MAX_SIZE = 25;
std::vector<int> graph[MAX_SIZE];
void solve_Q_size(const int v, int cur_vertex, const int subset, int& Q_size, int& visited)
{
visited |= (1 << cur_vertex);
for(int i = 0; i < (int)graph[cur_vertex].size(); i++){
int next_vertex = graph[cur_vertex][i];
//一度訪れた点はたどらない
if(visited & (1 << next_vertex)){
continue;
}
//subsetに含まれていたらさらにたどる,含まれていなかったらQ_sizeを増やして終了
if(subset & (1 << next_vertex)){
solve_Q_size(v, next_vertex, subset, Q_size, visited);
}else{
visited |= (1 << next_vertex);
Q_size++;
}
}
return;
}
int Recursive_Treewidth(int set1, int set2)
{
int set2_size = __builtin_popcount(set2);
if(set2_size == 1){
int Q_size = 0;
int visited = 0;
int v = __builtin_ffs(set2) - 1;
solve_Q_size(v, v, set1, Q_size, visited);
return Q_size;
}
int ans = INF;
int subset_size = set2_size / 2;
std::vector<int> set2_element(set2_size, 0);
int temp = set2;
int shift_count = 0, add_count = 0;
while(temp){
if(temp & 1){
set2_element[add_count++] = shift_count;
}
shift_count++;
temp >>= 1;
}
std::vector<bool> bitmask(set2_size, false);
std::fill(bitmask.end() - subset_size, bitmask.end(), true);
do {
int subset = 0;
for(int i = 0; i < set2_size; i++){
if(bitmask[i]){
subset += (1 << set2_element[i]);
}
}
int cand1 = Recursive_Treewidth(set1, subset);
int cand2 = Recursive_Treewidth(set1 | subset, set2 ^ subset);
ans = std::min(ans, std::max(cand1, cand2));
} while (std::next_permutation(bitmask.begin(), bitmask.end()));
return ans;
}
int solve_treewidth(int node_size)
{
int V = (1 << node_size) - 1;
return Recursive_Treewidth(0, V);
}
int main()
{
int node_size, edge_size;
std::cin >> node_size >> edge_size;
for(int i = 0; i < edge_size; i++){
int u,v;
std::cin >> u >> v;
graph[u].push_back(v), graph[v].push_back(u);
}
clock_t start = clock(); // スタート時間
std::cout << solve_treewidth(node_size) << std::endl;
clock_t end = clock(); // 終了時間
std::cout << "duration = " << (double)(end - start) / CLOCKS_PER_SEC << "sec.\n";
}
verify していません(verify 問題を知らない)