$\newcommand{\O}{\mathrm{O}}$

単一始点最短経路の高速化のために考えられたヒープで Dijkstra 法の計算量オーダーを改善できたり, 他にもプリム法や無向グラフの大域最小カットや最小全域有向木などの計算量オーダーを改善できる.
(参考 1, 参考 2, 参考 3, 参考 4)
一般的な二分ヒープとは異なり, push を $\O (1)$, pop(最小値削除) を ならし $\O (\log n)$ の時間計算量で行うことができる.
二分ヒープと比べて優位な点としてキーの値を減らす方向への更新(decrease_key) がならし $\O (1)$ の時間計算量で行えることが挙げられ, 上記のアルゴリズムについてもこの影響でオーダーが落ちる.
またヒープの併合も簡単に行うことができる.
このスライドの説明をもとに実装した.
キー値減算を行いたい場合は push 時に push されたノードへのポインタを返すのでそれを配列などで保持しておき, decrease_key(ノードへのポインタ, 減らす値) を呼ぶことで実現できる.
Dijkstra 法での応用のようにヒープにキー値(最短距離)だけでなくデータ(頂点)も持たせたくなる場合が多い. ただキー値減算をサポートしている影響でキー値の型に対して減算が定義されている必要があり,
そのまま普通の Dijkstra 法のようにキー値を std::pair にすることはできなくて煩わしい. なのでキー値だけ保持するヒープだけでなくキー値とデータを保持するヒープも $2$ つ目の実装として置いた.
元論文は "Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms" [Fredman, Tarjan 1984]
時間計算量: push $\O (1)$, pop ならし $\O (\log n)$, decrease_key(キー値減算) ならし $\O (1)$, meld $\O (1)$
template<typename _Key> class FibonacciHeap
{
public:
class node
{
public:
_Key _key;
unsigned short int _child;
bool _mark;
node *_par, *_prev, *_next, *_ch_last;
node(_Key&& _key) : _key(move(_key)), _child(0), _mark(false),
_par(nullptr), _prev(nullptr), _next(nullptr), _ch_last(nullptr){}
void insert(node *cur){
if(_ch_last) insert_impl(cur, _ch_last);
else _ch_last = cur, _ch_last->_prev = _ch_last->_next = _ch_last;
++_child, cur->_par = this;
}
void erase(node *cur){
if(cur == cur->_prev){
_ch_last = nullptr;
}else{
erase_impl(cur);
if(cur == _ch_last) _ch_last = cur->_prev;
}
--_child, cur->_par = nullptr;
}
};
public:
static constexpr float FACTOR = 1.0f/log2((1.0f+sqrt(5.0f))/2.0f);
size_t _size;
node *_minimum;
vector<node*> rank;
static void insert_impl(node *cur, node *next){
cur->_prev = next->_prev, cur->_next = next;
cur->_prev->_next = cur, next->_prev = cur;
}
static void erase_impl(node *cur){
cur->_prev->_next = cur->_next, cur->_next->_prev = cur->_prev;
}
static int ceil2(int u){
return 32 - __builtin_clz(u);
}
void root_insert(node *cur){
if(_minimum){
insert_impl(cur, _minimum);
if(cur->_key < _minimum->_key) _minimum = cur;
}else{
_minimum = cur, _minimum->_prev = _minimum->_next = _minimum;
}
}
void root_erase(node *cur){
if(cur == cur->_next) _minimum = nullptr;
else erase_impl(cur);
}
void _delete(node *cur){
root_erase(cur);
delete cur;
}
template<typename Key>
node *_push(Key&& key){
++_size;
_Key new_key = forward<Key>(key);
node* new_node = new node(move(new_key));
root_insert(new_node);
return new_node;
}
void _pop(){
assert(_size > 0);
--_size;
if(_size == 0){
_delete(_minimum);
return;
}
if(_minimum->_ch_last){
for(node *cur = _minimum->_ch_last->_next;;){
node *next = cur->_next;
_minimum->erase(cur), root_insert(cur);
if(!_minimum->_ch_last) break;
cur = next;
}
}
node *next_minimum = _minimum->_next;
const unsigned int max_rank = ceil(ceil2(_size) * FACTOR);
rank.resize(max_rank + 1);
for(node*& cur : rank) cur = nullptr;
for(node *cur = next_minimum; cur != _minimum;){
if(cur->_key < next_minimum->_key) next_minimum = cur;
node *next = cur->_next;
unsigned int deg = cur->_child;
while(rank[deg]){
if(cur->_key < rank[deg]->_key || cur == next_minimum){
root_erase(rank[deg]), cur->insert(rank[deg]);
}else{
root_erase(cur), rank[deg]->insert(cur);
cur = rank[deg];
}
rank[deg++] = nullptr;
}
rank[deg] = cur;
cur = next;
}
_delete(_minimum);
_minimum = next_minimum;
}
void _decrease_key(node *cur, const _Key& key){
assert(!(key < (_Key)0));
node *change = ((cur->_key -= key) < _minimum->_key) ? cur : nullptr;
if(!cur->_par || !(cur->_key < cur->_par->_key)){
if(change) _minimum = change;
return;
}
while(true){
node *next = cur->_par;
next->erase(cur), root_insert(cur);
cur->_mark = false, cur = next;
if(!cur->_par) break;
if(!cur->_mark){
cur->_mark = true;
break;
}
}
if(change) _minimum = change;
}
void clear_dfs(node *cur){
if(cur->_ch_last){
for(node *_cur = cur->_ch_last->_next;;){
node *next = _cur->_next;
if(_cur == cur->_ch_last){
clear_dfs(_cur);
break;
}else{
clear_dfs(_cur);
}
_cur = next;
}
}
delete cur;
return;
}
void _clear(){
if(!_minimum) return;
for(node *cur = _minimum->_next;;){
node *next = cur->_next;
if(cur == _minimum){
clear_dfs(cur);
break;
}else{
clear_dfs(cur);
}
cur = next;
}
}
public:
FibonacciHeap() noexcept : _size(0u), _minimum(nullptr){}
FibonacciHeap(const FibonacciHeap&) = delete;
FibonacciHeap(FibonacciHeap&& another)
: _size(move(another._size)), rank(move(another.rank)){
_minimum = another._minimum, another._minimum = nullptr;
}
FibonacciHeap& operator=(const FibonacciHeap&) = delete;
FibonacciHeap& operator=(FibonacciHeap&& another){
_size = move(another._size), rank = move(another.rank);
_clear(), _minimum = another._minimum, another._minimum = nullptr;
}
// ~FibonacciHeap(){ _clear(); }
inline bool empty() const noexcept { return (_size == 0); }
inline size_t size() const noexcept { return _size; }
inline const _Key& top() const noexcept { return _minimum->_key; }
node *push(const _Key& key){ return _push(key); }
node *push(_Key&& key){ return _push(move(key)); }
void pop(){ _pop(); }
void decrease_key(node *cur, const _Key& key){ _decrease_key(cur, key); }
void clear(){ _clear(); _size = 0; rank.~vector<node*>(); }
friend FibonacciHeap *meld(FibonacciHeap *fh1, FibonacciHeap *fh2){
if(fh2->_size == 0){
fh2->~FibonacciHeap();
return fh1;
}
if(fh1->_size == 0){
fh1->~FibonacciHeap();
return fh2;
}
fh1->_minimum->_prev->_next = fh2->_minimum->_next;
fh2->_minimum->_next->_prev = fh1->_minimum->_prev;
fh2->_minimum->_next = fh1->_minimum;
fh1->_minimum->_prev = fh2->_minimum;
fh1->_size += fh2->_size;
if(fh2->_minimum->_key < fh1->_minimum->_key) fh1->_minimum = fh2->_minimum;
fh2->~FibonacciHeap();
return fh1;
}
// DEBUG 用
int dfs(node *cur, bool print, int depth) const {
if(!cur->_ch_last){
assert(cur->_child == 0);
return 1;
}
int sz = 1;
for(node *next = cur->_ch_last->_next; ; next = next->_next){
if(print) cout << depth << ": " << next->_key << " " << next->_mark << endl;
sz += dfs(next, print, depth + 1);
if(next == cur->_ch_last) break;
}
return sz;
}
void check(bool print = false) const {
if(!_minimum){
assert(_size == 0);
return;
}
size_t sz = 0;
for(node *cur = _minimum->_next; ; cur = cur->_next){
if(print) cout << "0: " << cur->_key << endl;
sz += dfs(cur, print, 1);
if(cur == _minimum) break;
}
cout << endl;
assert(sz == _size);
}
};
template<typename _Key, typename _Tp> class FibonacciHeap
{
public:
using data_type = pair<_Key, _Tp>;
class node
{
public:
data_type _data;
unsigned short int _child;
bool _mark;
node *_par, *_prev, *_next, *_ch_last;
node(data_type&& data) : _data(move(data)), _child(0), _mark(false),
_par(nullptr), _prev(nullptr), _next(nullptr), _ch_last(nullptr){}
inline const _Key& get_key() const noexcept { return _data.first; }
void insert(node *cur){
if(_ch_last) insert_impl(cur, _ch_last);
else _ch_last = cur, _ch_last->_prev = _ch_last->_next = _ch_last;
++_child, cur->_par = this;
}
void erase(node *cur){
if(cur == cur->_prev){
_ch_last = nullptr;
}else{
erase_impl(cur);
if(cur == _ch_last) _ch_last = cur->_prev;
}
--_child, cur->_par = nullptr;
}
};
private:
static constexpr float FACTOR = 1.0f / log2((1.0f + sqrt(5.0f)) / 2.0f);
size_t _size;
node *_minimum;
vector<node*> rank;
static void insert_impl(node *cur, node *next){
cur->_prev = next->_prev, cur->_next = next;
cur->_prev->_next = cur, next->_prev = cur;
}
static void erase_impl(node *cur){
cur->_prev->_next = cur->_next, cur->_next->_prev = cur->_prev;
}
static int ceil2(int u){
return 32 - __builtin_clz(u);
}
void root_insert(node *cur){
if(_minimum){
insert_impl(cur, _minimum);
if(cur->get_key() < _minimum->get_key()) _minimum = cur;
}else{
_minimum = cur, _minimum->_prev = _minimum->_next = _minimum;
}
}
void root_erase(node *cur){
if(cur == cur->_prev) _minimum = nullptr;
else erase_impl(cur);
}
void _delete(node *cur){
root_erase(cur);
delete cur;
}
template<typename Key, typename Data>
node *_push(Key&& key, Data&& data){
++_size;
data_type new_data(forward<Key>(key), forward<Data>(data));
node* new_node = new node(move(new_data));
root_insert(new_node);
return new_node;
}
void _pop(){
assert(_size > 0);
--_size;
if(_size == 0){
_delete(_minimum);
return;
}
if(_minimum->_ch_last){
for(node *cur = _minimum->_ch_last->_next;;){
node *next = cur->_next;
_minimum->erase(cur), root_insert(cur);
if(!_minimum->_ch_last) break;
cur = next;
}
}
node *next_minimum = _minimum->_next;
const unsigned int max_rank = ceil(ceil2(_size) * FACTOR);
rank.resize(max_rank + 1);
for(node*& cur : rank) cur = nullptr;
for(node *cur = next_minimum; cur != _minimum;){
if(cur->get_key() < next_minimum->get_key()) next_minimum = cur;
node *next = cur->_next;
unsigned int deg = cur->_child;
while(rank[deg]){
if(cur->get_key() < rank[deg]->get_key() || cur == next_minimum){
root_erase(rank[deg]), cur->insert(rank[deg]);
}else{
root_erase(cur), rank[deg]->insert(cur);
cur = rank[deg];
}
rank[deg++] = nullptr;
}
rank[deg] = cur;
cur = next;
}
_delete(_minimum);
_minimum = next_minimum;
}
void _decrease_key(node *cur, const _Key& key){
assert(!(key < (_Key)0));
node *change = ((cur->_data.first -= key) < _minimum->get_key()) ? cur : nullptr;
if(!cur->_par || !(cur->get_key() < cur->_par->get_key())){
if(change) _minimum = change;
return;
}
while(true){
node *next = cur->_par;
next->erase(cur), root_insert(cur);
cur->_mark = false, cur = next;
if(!cur->_par) break;
if(!cur->_mark){
cur->_mark = true;
break;
}
}
if(change) _minimum = change;
}
void clear_dfs(node *cur){
if(cur->_ch_last){
for(node *_cur = cur->_ch_last->_next;;){
node *next = _cur->_next;
if(_cur == cur->_ch_last){
clear_dfs(_cur);
break;
}else{
clear_dfs(_cur);
}
_cur = next;
}
}
delete cur;
return;
}
void _clear(){
if(!_minimum) return;
for(node *cur = _minimum->_next;;){
node *next = cur->_next;
if(cur == _minimum){
clear_dfs(cur);
break;
}else{
clear_dfs(cur);
}
cur = next;
}
}
public:
FibonacciHeap() noexcept : _size(0u), _minimum(nullptr){}
FibonacciHeap(const FibonacciHeap&) = delete;
FibonacciHeap(FibonacciHeap&& another)
: _size(move(another._size)), rank(move(another.rank)){
_minimum = another._minimum, another._minimum = nullptr;
}
FibonacciHeap& operator=(const FibonacciHeap&) = delete;
FibonacciHeap& operator=(FibonacciHeap&& another){
_size = move(another._size), rank = move(another.rank);
_clear(), _minimum = another._minimum, another._minimum = nullptr;
}
// ~FibonacciHeap(){ _clear(); }
inline bool empty() const noexcept { return (_size == 0); }
inline size_t size() const noexcept { return _size; }
inline const data_type& top() const noexcept { return _minimum->_data; }
template<typename Key, typename Data>
node *push(Key&& key, Data&& data){ return _push(forward<Key>(key), forward<Data>(data)); }
void pop(){ _pop(); }
void decrease_key(node *cur, const _Key& key){ _decrease_key(cur, key); }
void clear(){ _clear(); _size = 0; rank.~vector<node*>(); }
friend FibonacciHeap *meld(FibonacciHeap *fh1, FibonacciHeap *fh2){
if(fh2->_size == 0){
fh2->~FibonacciHeap();
return fh1;
}
if(fh1->_size == 0){
fh1->~FibonacciHeap();
return fh2;
}
fh1->_minimum->_prev->_next = fh2->_minimum->_next;
fh2->_minimum->_next->_prev = fh1->_minimum->_prev;
fh2->_minimum->_next = fh1->_minimum;
fh1->_minimum->_prev = fh2->_minimum;
fh1->_size += fh2->_size;
if(fh2->_minimum->get_key() < fh1->_minimum->get_key()) fh1->_minimum = fh2->_minimum;
fh2->~FibonacciHeap();
return fh1;
}
// DEBUG 用
int dfs(node *cur, bool print, int depth) const {
if(!cur->_ch_last){
assert(cur->_child == 0);
return 1;
}
int sz = 1;
for(node *next = cur->_ch_last->_next; ; next = next->_next){
if(print) cout << depth << ": " << next->_data.first << " " <<
next->_data.second << " " << next->_mark << endl;
sz += dfs(next, print, depth + 1);
if(next == cur->_ch_last) break;
}
return sz;
}
void check(bool print = false) const {
if(!_minimum){
assert(_size == 0);
return;
}
size_t sz = 0;
for(node *cur = _minimum->_next; ; cur = cur->_next){
if(print) cout << "0: " << cur->_data.first << " " <<
cur->_data.second << endl;
sz += dfs(cur, print, 1);
if(cur == _minimum) break;
}
cout << endl;
assert(sz == _size);
}
};
AOJ : Minimum Spanning Tree
提出コード
(参考) verify 1, verify 2, verify 3