$\newcommand{\O}{\mathrm{O}}$

一般グラフの重みなし最大マッチングを求める乱択アルゴリズム(構築有り). 最大マッチングを求めるアルゴリズムとしては Edmonds の花分解アルゴリズムが有名であるが, 同時に $\O (n^3)$ の乱択アルゴリズムも知られており, 以下はその実装となっている(参考1, 参考2 を参照しました). 実測はそんなに良くないが numeric に解けるので個人的に好き.
(関数)
add_edge() : 辺を追加する
perfect_matching() : 完全マッチングがどうかの判定
maximum_matching() : 最大マッチングの数を返す
find_maximum_matching() : 最大マッチングの数を計算し, その組を返す
時間計算量: $\O (n^3)$
template <uint mod>
class ModInt {
private:
uint v;
static uint norm(const uint& x){ return x < mod ? x : x - mod; }
static ModInt make(const uint& x){ ModInt m; return m.v = x, m; }
static ModInt inv(const ModInt& x){ return make(inverse(x.v, mod)); }
static uint inverse(int a, int m){
int u[] = {a, 1, 0}, v[] = {m, 0, 1}, t;
while(*v){
t = *u / *v;
swap(u[0] -= t * v[0], v[0]), swap(u[1] -= t * v[1], v[1]), swap(u[2] -= t * v[2], v[2]);
}
return (u[1] % m + m) % m;
}
public:
ModInt() : v{0}{}
ModInt(const ll val) : v{norm(val % mod + mod)} {}
ModInt(const ModInt<mod>& n) : v{n()} {}
explicit operator bool() const noexcept { return v != 0; }
bool operator!() const noexcept { return !static_cast<bool>(*this); }
ModInt& operator=(const ModInt& n){ return v = n(), (*this); }
ModInt& operator=(const ll val){ return v = norm(val % mod + mod), (*this); }
ModInt operator+() const { return *this; }
ModInt operator-() const { return v == 0 ? 0 : mod - v; }
ModInt operator+(const ModInt& val) const { return make(norm(v + val())); }
ModInt operator-(const ModInt& val) const { return make(norm(v + mod - val())); }
ModInt operator*(const ModInt& val) const { return make((ll)v * val() % mod); }
ModInt operator/(const ModInt& val) const { return *this * inv(val); }
ModInt& operator+=(const ModInt& val){ return *this = *this + val; }
ModInt& operator-=(const ModInt& val){ return *this = *this - val; }
ModInt& operator*=(const ModInt& val){ return *this = *this * val; }
ModInt& operator/=(const ModInt& val){ return *this = *this / val; }
ModInt operator+(const ll val) const { return ModInt{v + val}; }
ModInt operator-(const ll val) const { return ModInt{v - val}; }
ModInt operator*(const ll val) const { return ModInt{(ll)v * (val % mod)}; }
ModInt operator/(const ll val) const { return ModInt{(ll)v * inv(val)}; }
ModInt& operator+=(const ll val){ return *this = *this + val; }
ModInt& operator-=(const ll val){ return *this = *this - val; }
ModInt& operator*=(const ll val){ return *this = *this * val; }
ModInt& operator/=(const ll val){ return *this = *this / val; }
bool operator==(const ModInt& val) const { return v == val.v; }
bool operator!=(const ModInt& val) const { return !(*this == val); }
bool operator==(const ll val) const { return v == norm(val % mod + mod); }
bool operator!=(const ll val) const { return !(*this == val); }
uint operator()() const { return v; }
friend ModInt operator+(const ll val, const ModInt& n) { return n + val; }
friend ModInt operator-(const ll val, const ModInt& n) { return ModInt{val - n()}; }
friend ModInt operator*(const ll val, const ModInt& n) { return n * val; }
friend ModInt operator/(const ll val, const ModInt& n) { return ModInt{val} / n; }
friend bool operator==(const ll val, const ModInt& n) { return n == val; }
friend bool operator!=(const ll val, const ModInt& n) { return !(val == n); }
friend istream& operator>>(istream& is, ModInt& n){
uint v;
return is >> v, n = v, is;
}
friend ostream& operator<<(ostream& os, const ModInt& n){ return (os << n()); }
friend ModInt power(ModInt x, ll n){
ModInt ans = 1;
while(n){
if(n & 1) ans *= x;
x *= x, n >>= 1;
}
return ans;
}
};
template<typename T> class mat : public vector<vector<T> > {
private:
int r, c; //行,列
public:
inline int row() const { return r; }
inline int column() const { return c; }
mat(const int n) : mat(n, n, 0){}
mat(const int n, const int m, T val = 0)
: vector<vector<T> >(n, vector<T>(m, val)), r{n}, c{m}{}
mat operator+(const mat& another) const {
mat<T> X(r, c);
for(int i = 0; i < r; i++){
for(int j = 0; j < c; j++){
X[i][j] = (*this)[i][j] + another[i][j];
}
}
return X;
}
mat operator-(const mat& another) const {
mat<T> X(r,c);
for(int i = 0; i < r; i++){
for(int j = 0; j < c; j++){
X[i][j] = (*this)[i][j] - another[i][j];
}
}
return X;
}
mat operator*(const mat& another) const {
mat<T> X(r, another.c);
for(int i = 0; i < r; i++){
for(int k = 0; k < c; k++){
if(!(*this)[i][k]) continue;
for(int j = 0; j < (another.c); j++){
X[i][j] += (*this)[i][k] * another[k][j];
}
}
}
return X;
}
vector<int> rank(){
mat<T> X(r, c);
for(int i = 0; i < r; i++){
for(int j = 0; j < c; j++){
X[i][j] = (*this)[i][j];
}
}
vector<int> index;
int res = 0;
for(int i = 0; i < c; i++){
if(res == r) break;
if(!X[res][i]){
int pivot = res + 1;
for(; pivot < r; pivot++){
if(X[pivot][i]){
swap(X[res], X[pivot]);
break;
}
}
if(pivot == r) continue;
}
const T p = (T)1 / X[res][i];
for(int j = i + 1; j < c; j++){ X[res][j] *= p; }
for(int j = res + 1; j < r; j++){
if(!X[j][i]) continue;
for(int k = i + 1; k < c; k++){
X[j][k] -= X[res][k] * X[j][i];
}
}
index.push_back(i), ++res;
}
return index;
}
bool det_zero() const {
mat<T> X(r);
for(int i = 0; i < r; i++){
for(int j = 0; j < c; j++){
X[i][j] = (*this)[i][j];
}
}
for(int i = 0; i < c; i++){
if(!X[i][i]){
int pivot = i + 1;
for(; pivot < r; pivot++){
if(X[pivot][i]){
swap(X[i], X[pivot]);
break;
}
}
if(pivot == r) return true;
}
const T p = (T)1 / X[i][i];
for(int j = i + 1; j < c; j++){ X[i][j] *= p; }
for(int j = i + 1; j < r; j++){
if(!X[j][i]) continue;
for(int k = i + 1; k < c; k++){
X[j][k] -= X[i][k] * X[j][i];
}
}
}
return false;
}
mat inverse() const {
mat X(r, 2*r);
for(int i = 0; i < r; i++){
for(int j = 0; j < r; j++){
X[i][j] = (*this)[i][j];
}
}
for(int i = 0; i < r; i++){
X[i][r+i] = 1;
}
for(int i = 0; i < r; i++){
if(!X[i][i]){
int pivot = i + 1;
for(; pivot < r; pivot++){
if(X[pivot][i]){
swap(X[i],X[pivot]);
break;
}
}
assert(pivot < r);
}
const T p = (T)1 / X[i][i];
for(int j = i + 1; j < 2*r; j++){ X[i][j] *= p; }
for(int j = 0; j < r; j++){
if(i == j || !X[j][i]) continue;
for(int k = i + 1; k < 2*r; k++){
X[j][k] -= X[i][k] * X[j][i];
}
}
}
mat res(r, r);
for(int i = 0; i < r; i++){
for(int j = 0; j < r; j++){
res[i][j] = X[i][r+j];
}
}
return res;
}
};
class Matching {
private:
const int V;
vector<pair<int, int> > es;
vector<int> index;
random_device rnd;
mt19937 mt;
uniform_int_distribution<> randval;
static constexpr int LOOP = 1;
static constexpr uint mod = 1000000007;
mat<ModInt<mod> > inverse_22(const int id, const mat<ModInt<mod> >& invT){
ModInt<mod> invdev = (ModInt<mod>)1 / (invT[0][0]*invT[id][id] - invT[0][id]*invT[id][0]);
mat<ModInt<mod> > invN_3n_3n(2, 2);
invN_3n_3n[0][0] = invT[id][id] * invdev, invN_3n_3n[0][1] = -invT[0][id] * invdev;
invN_3n_3n[1][0] = -invT[id][0] * invdev, invN_3n_3n[1][1] = invT[0][0] * invdev;
return invN_3n_3n;
}
void schur_complement(const int id, mat<ModInt<mod> >& invT){
int sz = invT.row(), x = 0;
mat<ModInt<mod> >N_12_12(sz-2), N_12_3n(sz-2, 2), N_3n_12(2, sz-2);
for(int i = 1; i < sz; i++){
if(i == id) continue;
int y = 0;
for(int j = 1; j < sz; j++){
if(j == id) continue;
N_12_12[x][y] = invT[i][j];
N_3n_12[0][y] = invT[0][j], N_3n_12[1][y++] = invT[id][j];
}
N_12_3n[x][0] = invT[i][0], N_12_3n[x++][1] = invT[i][id];
}
invT = N_12_12 - N_12_3n * inverse_22(id, invT) * N_3n_12;
}
vector<pair<int, int> > find_matching(const mat<ModInt<mod> >& T){
vector<pair<int, int> > ans;
int sz = T.row();
mat<ModInt<mod> > invT = T.inverse();
vector<int> vset(sz); iota(vset.begin(), vset.end(), 0);
for(int i = sz; i > 0; i -= 2){
for(int j = 1; j < i; j++){
if(invT[0][j] && T[vset[0]][vset[j]]){
ans.emplace_back(index[vset[0]], index[vset[j]]);
vset.erase(vset.begin()), vset.erase(vset.begin() + j - 1);
schur_complement(j, invT);
break;
}
}
}
return ans;
}
public:
Matching(const int node_size) : V(node_size), mt(rnd()), randval(1, mod - 1){}
void add_edge(const int u, const int v){ es.emplace_back(u, v); }
bool perfect_matching(){
for(int i = 0; i < LOOP; i++){
mat<ModInt<mod> > A(V);
for(auto e : es){
int r = randval(mt);
A[e.first][e.second] = r, A[e.second][e.first] = -r;
}
if(!A.det_zero()) return true;
}
return false;
}
int maximum_matching(){
int mx = 0;
for(int i = 0; i < LOOP; i++){
mat<ModInt<mod> > A(V);
for(auto e : es){
int r = randval(mt);
A[e.first][e.second] = r, A[e.second][e.first] = -r;
}
vector<int> res = A.rank();
mx = max(mx, (int)res.size());
}
return mx / 2;
}
vector<pair<int, int> > find_maximum_matching(){
mat<ModInt<mod> > X(V);
vector<pair<int, int> > ans;
for(int i = 0; i < LOOP; i++){
mat<ModInt<mod> > A(V);
for(auto e : es){
int r = randval(mt);
A[e.first][e.second] = r, A[e.second][e.first] = -r;
}
vector<int> res = A.rank();
if((int)res.size() > (int)index.size()) index = res, X = A;
}
const int sz = (int)index.size();
vector<int> unzip(V, -1);
for(int i = 0; i < sz; ++i) unzip[index[i]] = i;
mat<ModInt<mod> > A(sz);
for(auto e : es){
const int u = unzip[e.first], v = unzip[e.second];
if(u < 0 || v < 0) continue;
A[u][v] = X[e.first][e.second], A[v][u] = X[e.second][e.first];
}
return find_matching(A);
}
};
完全マッチングの判定の verify(実際には微妙に異なる)
AOJ : Sunny Graph
提出コード
最大マッチングの判定および構築の verify
Atcoder : 一般最大マッチング
提出コード
yosupo さんの library checker : Matching on General Graph
提出コード