体上の係数が未知の n−1 次多項式 f(x)=∑n−1i=0cixi に対して
n 個の値の組 (u0,v0=f(u0)),…,(un−1,vn−1=f(un−1)) が分かっているとする.
ただし, ui はすべて異なるものとする.
このとき f(x) のすべての係数 ci(0≤i<n) を求めるアルゴリズムである.
以下の実装は Z/pZ (p は素数) の場合の実装で特に素数 p について
p=k∗2l+1(k>0,n+1≤2l) を満たすこと(数論変換に乗ること)を仮定している.
こちらの参考資料が分かりやすく, それを基に実装を行った.
(関数)
polynomial_interpolation(u,v): 未知の n−1 次多項式 f の n 点の値 v0=f(u0),…,vn−1=f(un−1)
を与える(u は全て異なるものとする). 多項式 f(x)=∑n−1i=0cixi の係数 c を配列として返す.
時間計算量: O(nlog2n)
- #define MOD 998244353
- #define root 3
- unsigned int add(const unsigned int x, const unsigned int y)
- {
- return (x + y < MOD) ? x + y : x + y - MOD;
- }
- unsigned int sub(const unsigned int x, const unsigned int y)
- {
- return (x >= y) ? (x - y) : (MOD - y + x);
- }
- unsigned int mul(const unsigned int x, const unsigned int y)
- {
- return (unsigned long long)x * y % MOD;
- }
- unsigned int mod_pow(unsigned int x, unsigned int n)
- {
- unsigned int res = 1;
- while(n > 0) {
- if(n & 1) { res = mul(res, x); }
- x = mul(x, x);
- n >>= 1;
- }
- return res;
- }
- unsigned int inverse(const unsigned int x)
- {
- return mod_pow(x, MOD - 2);
- }
- void ntt(vector<int>& a, const bool rev = false)
- {
- unsigned int i, j, k, l, p, q, r, s;
- const unsigned int size = a.size();
- if(size == 1) return;
- vector<int> b(size);
- r = rev ? (MOD - 1 - (MOD - 1) / size) : (MOD - 1) / size;
- s = mod_pow(root, r);
- vector<unsigned int> kp(size / 2 + 1, 1);
- for(i = 0; i < size / 2; ++i) kp[i + 1] = mul(kp[i], s);
- for(i = 1, l = size / 2; i < size; i <<= 1, l >>= 1){
- for(j = 0, r = 0; j < l; ++j, r += i){
- for(k = 0, s = kp[i * j]; k < i; ++k){
- p = a[k + r], q = a[k + r + size / 2];
- b[k + 2 * r] = add(p, q);
- b[k + 2 * r + i] = mul(sub(p, q), s);
- }
- }
- swap(a, b);
- }
- if(rev){
- s = inverse(size);
- for(i = 0; i < size; i++){ a[i] = mul(a[i], s); }
- }
- }
- vector<int> convolute(const vector<int>& a, const vector<int>& b, int asize, int bsize, int _size)
- {
- if((long long)asize * min(bsize, _size) < 128LL){
- vector<int> A(_size, 0);
- for(int i = 0; i < asize; ++i){
- for(int j = 0; j < min(bsize, _size - i); ++j){
- A[i+j] = add(A[i+j], mul(a[i], b[j]));
- }
- }
- return A;
- }
- const int size = asize + bsize - 1;
- int t = 1;
- while(t < size){ t <<= 1; }
- vector<int> A(t, 0), B(t, 0);
- for(int i = 0; i < asize; i++){ A[i] = (a[i] < MOD) ? a[i] : (a[i] % MOD); }
- for(int i = 0; i < bsize; i++){ B[i] = (b[i] < MOD) ? b[i] : (b[i] % MOD); }
- ntt(A), ntt(B);
- for(int i = 0; i < t; i++) { A[i] = mul(A[i], B[i]); }
- ntt(A, true);
- A.resize(_size);
- return A;
- }
- vector<int> polynomial_inverse(const vector<int>& a, int r){
- vector<int> h = {(int)inverse(a[0])};
- int t = 1;
- for(int i = 0; t < r; ++i){
- t <<= 1;
- vector<int> res = convolute(a, convolute(h, h, t / 2, t / 2, t), min((int)a.size(), t), t, t);
- for(int j = 0; j < t; ++j){
- res[j] = MOD - res[j];
- if(j < t / 2) res[j] = add(res[j], mul(2, h[j]));
- }
- swap(h, res);
- }
- h.resize(r);
- return h;
- }
- pair<vector<int>, vector<int> > polynomial_division(const vector<int>& a, const vector<int>& b)
- {
- const int n = a.size() - 1, m = b.size() - 1;
- assert(b[m] != 0);
- if(n < m) return {vector<int>(n - m + 1, 0), a};
- vector<int> reva(n + 1), revb(m + 1);
- for(int i = 0; i <= n; ++i) reva[n - i] = a[i];
- for(int i = 0; i <= m; ++i) revb[m - i] = b[i];
- vector<int> inv_revb = polynomial_inverse(revb, n - m + 1);
- vector<int> res = convolute(reva, inv_revb, n - m + 1, n - m + 1, n - m + 1);
- vector<int> q(n - m + 1), r;
- for(int i = 0; i < n - m + 1; ++i) q[i] = res[n - m - i];
- vector<int> qb = convolute(q, b, n - m + 1, m + 1, n + 1);
- bool first = false;
- for(int i = n; i >= 0; --i){
- const int val = sub(a[i], qb[i]);
- if(!first && val > 0){
- first = true, r.resize(i + 1);
- }
- if(first) r[i] = val;
- }
- return {q, r};
- }
- int func(const vector<int>& f, const int u){
- int res = 0, mult = 1;
- for(int i = 0; i < (int)f.size(); ++i){
- res = add(res, mul(f[i], mult));
- mult = mul(mult, u);
- }
- return res;
- }
- int pre_computation(const vector<int>& u, vector<vector<vector<int> > >& p)
- {
- const int m = (int)u.size();
- int sz = 1, t = 1;
- while(t < m) ++sz, t <<= 1;
- const int res = t;
- p.resize(sz), p[sz - 1].resize(t);
- for(int j = 0; j < m; ++j){
- p[sz - 1][j] = {(int)sub(0, u[j]), 1};
- }
- for(int j = m; j < t; ++j){
- p[sz - 1][j] = {1};
- }
- t /= 2;
- for(int i = sz - 2; i >= 0; --i){
- p[i].resize(t);
- for(int j = 0; j < t; ++j){
- const int x = (int)p[i+1][2*j].size(), y = (int)p[i+1][2*j+1].size();
- if(y > 1) p[i][j] = convolute(p[i+1][2*j], p[i+1][2*j+1], x, y, x + y - 1);
- else p[i][j] = p[i+1][2*j];
- }
- t /= 2;
- }
- return res;
- }
- void recursive_multipoint_evaluation(const vector<int>& f, const vector<int>& u,
- const vector<vector<vector<int> > >& p, vector<int>& ans, const int usize, const int size,
- const int depth, const int num)
- {
- if(usize <= 32){
- for(int i = 0; i < usize; ++i){
- const int ad = func(f, u[ans.size()]);
- ans.push_back(ad);
- }
- return;
- }
- const int lsize = min(usize, size / 2), rsize = max(usize - size / 2, 0);
- auto r0 = polynomial_division(f, p[depth + 1][2 * num]);
- recursive_multipoint_evaluation(r0.second, u, p, ans, lsize, size / 2, depth + 1, 2 * num);
- if(rsize == 0) return;
- auto r1 = polynomial_division(f, p[depth + 1][2 * num + 1]);
- recursive_multipoint_evaluation(r1.second, u, p, ans, rsize, size / 2, depth + 1, 2 * num + 1);
- }
- vector<int> multipoint_evaluation
- (const vector<int>& f, const vector<int>& u, const vector<vector<vector<int> > >& p, const int al)
- {
- vector<int> ans;
- return recursive_multipoint_evaluation(f, u, p, ans, (int)u.size(), al, 0, 0), ans;
- }
- vector<int> differentiate(const vector<int>& a)
- {
- const int n = (int)a.size();
- vector<int> res(n - 1);
- for(int i = 0; i < n - 1; ++i){
- res[i] = mul(a[i + 1], i + 1);
- }
- return res;
- }
- vector<int> _pre_computation
- (const vector<int>& u, const vector<int>& v, vector<vector<vector<int> > >& p)
- {
- const int al = pre_computation(u, p);
- const vector<int> g = differentiate(p[0][0]);
- return multipoint_evaluation(g, u, p, al);
- }
- void recursive_polynomial_interpolation
- (const vector<int>& u, const vector<int>& v, vector<int>& res,
- const vector<vector<vector<int> > >& p, const int usize, const int size,
- const int depth, const int num, const int id)
- {
- if(usize == 1){
- res = {v[id]};
- return;
- }
- const int lsize = min(usize, size / 2), rsize = max(usize - size / 2, 0);
- if(rsize == 0){
- vector<int> r0;
- recursive_polynomial_interpolation(u, v, r0, p, lsize, size / 2, depth + 1, 2 * num, id);
- res.resize(lsize);
- for(int i = 0; i < lsize; ++i) res[i] = r0[i];
- }else{
- vector<int> r0, r1;
- recursive_polynomial_interpolation(u, v, r0, p, lsize, size / 2, depth + 1, 2 * num, id);
- recursive_polynomial_interpolation(u, v, r1, p, rsize, size / 2, depth + 1, 2 * num + 1, id + size / 2);
- const vector<int> res1 = convolute(r0, p[depth + 1][2 * num + 1], lsize, rsize + 1, lsize + rsize);
- const vector<int> res2 = convolute(r1, p[depth + 1][2 * num], rsize, lsize + 1, lsize + rsize);
- res.resize(lsize + rsize);
- for(int i = 0; i < lsize + rsize; ++i) res[i] = add(res1[i], res2[i]);
- }
- }
- vector<int> polynomial_interpolation(const vector<int>& u, const vector<int>& v)
- {
- const int n = (int)u.size();
- int t = 1;
- while(t < n) t <<= 1;
- vector<vector<vector<int> > > p;
- const vector<int> inv_s = _pre_computation(u, v, p);
- vector<int> vs(n);
- for(int i = 0; i < n; ++i) vs[i] = mul(v[i], inverse(inv_s[i]));
- vector<int> res;
- recursive_polynomial_interpolation(u, vs, res, p, n, t, 0, 0, 0);
- return res;
- }
yosupo さんの library checker : Polynomial Interpolation 提出コード