$\newcommand{\O}{\mathrm{O}}$

体上の係数が未知の $n - 1$ 次多項式 $f(x) = \sum_{i=0}^{n-1} c_i x^i$ に対して
$n$ 個の値の組 $(u_0, v_0 = f(u_0)), \dots, (u_{n-1}, v_{n-1} = f(u_{n-1}))$ が分かっているとする.
ただし, $u_i$ はすべて異なるものとする.
このとき $f(x)$ のすべての係数 $c_i (0 \le i < n)$ を求めるアルゴリズムである.
以下の実装は $\mathbb{Z} / p \mathbb{Z}$ ($p$ は素数) の場合の実装で特に素数 $p$ について
$p = k * 2^l + 1 (k > 0, n + 1 \le 2^l)$ を満たすこと(数論変換に乗ること)を仮定している.
こちらの参考資料が分かりやすく, それを基に実装を行った.
(関数)
polynomial_interpolation$(u, v)$: 未知の $n-1$ 次多項式 $f$ の $n$ 点の値 $v_0 = f(u_0), \dots, v_{n-1} = f(u_{n-1})$
を与える($u$ は全て異なるものとする). 多項式 $f(x) = \sum_{i=0}^{n-1} c_i x^i$ の係数 $c$ を配列として返す.
時間計算量: $\O (n \log^2 n)$
#define MOD 998244353
#define root 3
unsigned int add(const unsigned int x, const unsigned int y)
{
return (x + y < MOD) ? x + y : x + y - MOD;
}
unsigned int sub(const unsigned int x, const unsigned int y)
{
return (x >= y) ? (x - y) : (MOD - y + x);
}
unsigned int mul(const unsigned int x, const unsigned int y)
{
return (unsigned long long)x * y % MOD;
}
unsigned int mod_pow(unsigned int x, unsigned int n)
{
unsigned int res = 1;
while(n > 0) {
if(n & 1) { res = mul(res, x); }
x = mul(x, x);
n >>= 1;
}
return res;
}
unsigned int inverse(const unsigned int x)
{
return mod_pow(x, MOD - 2);
}
void ntt(vector<int>& a, const bool rev = false)
{
unsigned int i, j, k, l, p, q, r, s;
const unsigned int size = a.size();
if(size == 1) return;
vector<int> b(size);
r = rev ? (MOD - 1 - (MOD - 1) / size) : (MOD - 1) / size;
s = mod_pow(root, r);
vector<unsigned int> kp(size / 2 + 1, 1);
for(i = 0; i < size / 2; ++i) kp[i + 1] = mul(kp[i], s);
for(i = 1, l = size / 2; i < size; i <<= 1, l >>= 1){
for(j = 0, r = 0; j < l; ++j, r += i){
for(k = 0, s = kp[i * j]; k < i; ++k){
p = a[k + r], q = a[k + r + size / 2];
b[k + 2 * r] = add(p, q);
b[k + 2 * r + i] = mul(sub(p, q), s);
}
}
swap(a, b);
}
if(rev){
s = inverse(size);
for(i = 0; i < size; i++){ a[i] = mul(a[i], s); }
}
}
vector<int> convolute(const vector<int>& a, const vector<int>& b, int asize, int bsize, int _size)
{
if((long long)asize * min(bsize, _size) < 128LL){
vector<int> A(_size, 0);
for(int i = 0; i < asize; ++i){
for(int j = 0; j < min(bsize, _size - i); ++j){
A[i+j] = add(A[i+j], mul(a[i], b[j]));
}
}
return A;
}
const int size = asize + bsize - 1;
int t = 1;
while(t < size){ t <<= 1; }
vector<int> A(t, 0), B(t, 0);
for(int i = 0; i < asize; i++){ A[i] = (a[i] < MOD) ? a[i] : (a[i] % MOD); }
for(int i = 0; i < bsize; i++){ B[i] = (b[i] < MOD) ? b[i] : (b[i] % MOD); }
ntt(A), ntt(B);
for(int i = 0; i < t; i++) { A[i] = mul(A[i], B[i]); }
ntt(A, true);
A.resize(_size);
return A;
}
vector<int> polynomial_inverse(const vector<int>& a, int r){
vector<int> h = {(int)inverse(a[0])};
int t = 1;
for(int i = 0; t < r; ++i){
t <<= 1;
vector<int> res = convolute(a, convolute(h, h, t / 2, t / 2, t), min((int)a.size(), t), t, t);
for(int j = 0; j < t; ++j){
res[j] = MOD - res[j];
if(j < t / 2) res[j] = add(res[j], mul(2, h[j]));
}
swap(h, res);
}
h.resize(r);
return h;
}
pair<vector<int>, vector<int> > polynomial_division(const vector<int>& a, const vector<int>& b)
{
const int n = a.size() - 1, m = b.size() - 1;
assert(b[m] != 0);
if(n < m) return {vector<int>(n - m + 1, 0), a};
vector<int> reva(n + 1), revb(m + 1);
for(int i = 0; i <= n; ++i) reva[n - i] = a[i];
for(int i = 0; i <= m; ++i) revb[m - i] = b[i];
vector<int> inv_revb = polynomial_inverse(revb, n - m + 1);
vector<int> res = convolute(reva, inv_revb, n - m + 1, n - m + 1, n - m + 1);
vector<int> q(n - m + 1), r;
for(int i = 0; i < n - m + 1; ++i) q[i] = res[n - m - i];
vector<int> qb = convolute(q, b, n - m + 1, m + 1, n + 1);
bool first = false;
for(int i = n; i >= 0; --i){
const int val = sub(a[i], qb[i]);
if(!first && val > 0){
first = true, r.resize(i + 1);
}
if(first) r[i] = val;
}
return {q, r};
}
int func(const vector<int>& f, const int u){
int res = 0, mult = 1;
for(int i = 0; i < (int)f.size(); ++i){
res = add(res, mul(f[i], mult));
mult = mul(mult, u);
}
return res;
}
int pre_computation(const vector<int>& u, vector<vector<vector<int> > >& p)
{
const int m = (int)u.size();
int sz = 1, t = 1;
while(t < m) ++sz, t <<= 1;
const int res = t;
p.resize(sz), p[sz - 1].resize(t);
for(int j = 0; j < m; ++j){
p[sz - 1][j] = {(int)sub(0, u[j]), 1};
}
for(int j = m; j < t; ++j){
p[sz - 1][j] = {1};
}
t /= 2;
for(int i = sz - 2; i >= 0; --i){
p[i].resize(t);
for(int j = 0; j < t; ++j){
const int x = (int)p[i+1][2*j].size(), y = (int)p[i+1][2*j+1].size();
if(y > 1) p[i][j] = convolute(p[i+1][2*j], p[i+1][2*j+1], x, y, x + y - 1);
else p[i][j] = p[i+1][2*j];
}
t /= 2;
}
return res;
}
void recursive_multipoint_evaluation(const vector<int>& f, const vector<int>& u,
const vector<vector<vector<int> > >& p, vector<int>& ans, const int usize, const int size,
const int depth, const int num)
{
if(usize <= 32){
for(int i = 0; i < usize; ++i){
const int ad = func(f, u[ans.size()]);
ans.push_back(ad);
}
return;
}
const int lsize = min(usize, size / 2), rsize = max(usize - size / 2, 0);
auto r0 = polynomial_division(f, p[depth + 1][2 * num]);
recursive_multipoint_evaluation(r0.second, u, p, ans, lsize, size / 2, depth + 1, 2 * num);
if(rsize == 0) return;
auto r1 = polynomial_division(f, p[depth + 1][2 * num + 1]);
recursive_multipoint_evaluation(r1.second, u, p, ans, rsize, size / 2, depth + 1, 2 * num + 1);
}
vector<int> multipoint_evaluation
(const vector<int>& f, const vector<int>& u, const vector<vector<vector<int> > >& p, const int al)
{
vector<int> ans;
return recursive_multipoint_evaluation(f, u, p, ans, (int)u.size(), al, 0, 0), ans;
}
vector<int> differentiate(const vector<int>& a)
{
const int n = (int)a.size();
vector<int> res(n - 1);
for(int i = 0; i < n - 1; ++i){
res[i] = mul(a[i + 1], i + 1);
}
return res;
}
vector<int> _pre_computation
(const vector<int>& u, const vector<int>& v, vector<vector<vector<int> > >& p)
{
const int al = pre_computation(u, p);
const vector<int> g = differentiate(p[0][0]);
return multipoint_evaluation(g, u, p, al);
}
void recursive_polynomial_interpolation
(const vector<int>& u, const vector<int>& v, vector<int>& res,
const vector<vector<vector<int> > >& p, const int usize, const int size,
const int depth, const int num, const int id)
{
if(usize == 1){
res = {v[id]};
return;
}
const int lsize = min(usize, size / 2), rsize = max(usize - size / 2, 0);
if(rsize == 0){
vector<int> r0;
recursive_polynomial_interpolation(u, v, r0, p, lsize, size / 2, depth + 1, 2 * num, id);
res.resize(lsize);
for(int i = 0; i < lsize; ++i) res[i] = r0[i];
}else{
vector<int> r0, r1;
recursive_polynomial_interpolation(u, v, r0, p, lsize, size / 2, depth + 1, 2 * num, id);
recursive_polynomial_interpolation(u, v, r1, p, rsize, size / 2, depth + 1, 2 * num + 1, id + size / 2);
const vector<int> res1 = convolute(r0, p[depth + 1][2 * num + 1], lsize, rsize + 1, lsize + rsize);
const vector<int> res2 = convolute(r1, p[depth + 1][2 * num], rsize, lsize + 1, lsize + rsize);
res.resize(lsize + rsize);
for(int i = 0; i < lsize + rsize; ++i) res[i] = add(res1[i], res2[i]);
}
}
vector<int> polynomial_interpolation(const vector<int>& u, const vector<int>& v)
{
const int n = (int)u.size();
int t = 1;
while(t < n) t <<= 1;
vector<vector<vector<int> > > p;
const vector<int> inv_s = _pre_computation(u, v, p);
vector<int> vs(n);
for(int i = 0; i < n; ++i) vs[i] = mul(v[i], inverse(inv_s[i]));
vector<int> res;
recursive_polynomial_interpolation(u, vs, res, p, n, t, 0, 0, 0);
return res;
}
yosupo さんの library checker : Polynomial Interpolation 提出コード